

THE AMERICAN
ASSOCIATION
FOR LABORATORY
ACCREDITATION

ACCREDITED LABORATORY

A2LA has accredited

ANRITSU COMPANY CALIBRATION SERVICE Richardson, TX

for technical competence in the field of

Calibration

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories. This laboratory also meets the requirements of ANSI/NCSL Z540-1-1994 and any additional program requirements in the field of calibration. This accreditation also demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 18 June 2005).

Presented this 23rd day of May 2006

CORPORTANO SEAL VIEW NAMED IN THE PROPERTY OF COLUMN OF

President
For the Accreditation Council
Certificate Number 2160.02
Valid to April 30, 2008

For the calibrations to which this accreditation applies, please refer to the laboratory's Calibration Scope of Accreditation.

American Association for Laboratory Accreditation

SCOPE OF ACCREDITATION TO ISO 17025;2005 & ANSI/NCSL Z540-1-1994

ANRITSU COMPANY CALIBRATION SERVICES RICHARDSON FACILITY 1155 East Collins Blvd, Richardson, TX 75081

Yeou-Song (Brian) Lee Phone: 408 201 1976

CALIBRATION

Valid To: April 30, 2008 Certificate Number: 2160.02

In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this laboratory to perform the following calibrations¹:

I. Electrical - RF/Microwave

Parameter/Range	Frequency	Best Uncertainty ² (±)	Comments
Power Level – (10 to -60) dBm 30 MHz to 40 GHz	30 MHz 50 MHz to12 GHz (13 to 32) GHz (33 to 40) GHz	18 % 3.7 % 6.6 % 12 %	MA 247XA/B with ML 2437/8A Direct power measurement (for type N, 2.92 mm and 1.85 mm connector)

Parameter/Equipment	Range	Best Uncertainty ² (±)	Comments
Frequency -	10 MHz 40 GHz	1.2 Hz 1.5 Hz	MF241X, direct readings
GPS Disciplined Oscillator	10 MHz	5 parts in 10 ¹²	

Peter Mlayer

Parameter/Equipment	Range	Best Uncertainty ² (±)	Comments
Audio Level	3 mV to 500 V (20 Hz to 100 kHz)	5.7 %	R&H URE3 and Tek TDS3000B, direct measurement
BER/FER – Single Slot BER Single Slot FER	0 to 100 % 0 to 100 %	0.08 % 8 %	MT885X, direct measurement 100 Frames/CDMA

¹ This laboratory offers commercial calibration service.

Peter Alnger

² "Best Uncertainty" is the smallest uncertainty of measurement that a laboratory can achieve within its scope of accreditation when performing more or less routine calibrations of nearly ideal measurement standards of nearly ideal measuring equipment. Best uncertainties represent expanded uncertainties expressed at approximately the 95 % level of confidence, usually using a coverage factor of k = 2. The best uncertainty of a specific calibration performed by the laboratory may be greater than the best uncertainty due to the behavior of the customer's device and to influences from the circumstances of the specific calibration.